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1 Introduction

In the current paper we study order sampling introduced by Roseń (1997a). The
sampling procedure is based on the order of generated random variables. The
design allows unequal inclusion probabilities and gives fixed sample size.

The uniform order sampling is used for Swedish Consumer Price Index (Ohlsson
1998). Although easy to apply, the exact probability law of the order sampling
design was until recently unknown. The estimators under this design were built
on approximate inclusion probabilities called target inclusion probabilities.

Traat, Bondesson and Meister (2000) derived the exact probability function of
the order sampling design which made it possible to calculate the exact inclusion
probabilities for different order sampling designs. In bachelor thesis (Rajaleid
2000) computational aspects of order sampling design were considered. Earlier,
Aires (1998) has given recursive formulae for inclusion probabilities of Pareto
order sampling design.

In this paper the probability function of the order sampling design is derived
with an alternative method. Two different forms of the final result are presented.
A deeper attention is paid to the uniform order sampling and the behaviour
of the estimators and their variance estimators under that design. We employ
the exact inclusion probabilities which now can be calculated directly from the
formula of sampling design by standard methods. The software Mathcad is used
for calculations (the output is given in Appendices).

In this paper one more useful application of order sampling design is presented.
Recently Kröger, Särndal and Teikari (1999) have proposed a new sampling de-
sign, Pomix-sampling, which has inclusion probabilities in a form of a mixture
of equal and unequal inclusion probabilities. A shortcoming of their design is
variable sample size. We use mixture-type inclusion probabilities in our order
sampling design and overcome the shortcoming of Pomix-sampling. We study
the effect of the mixing parameter to the estimator variance in an example. We
notice the same surprising phenomena that the variance is not minimized with
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inclusion probabilities strictly proportional to size.

2 Basic concepts

Let U = {1, 2, ..., N} be a finite population and I = (I1, I2, ..., IN) a random
design vector on U describing sampling without replacement. Then

Ii =
{

1, if i is sampled,
0, otherwise. (1)

A realisation of I is denoted by k = (k1, k2, ..., kN), ki ∈ {0, 1}. Each k describes
a randomly selected sample.

The multivariate distribution of I, p(k) = P (I = k), is called sampling design
(Traat 2000) which in our case is a multivariate Bernoulli distribution.

The first and second order inclusion probabilities of population elements can be
computed as follows:

πi =
∑

k:ki=1

p(k), (2)

πij =
∑

k:ki=kj=1

p(k), (3)

where the summation is taken over all the points k in which ith (or ith and jth)
coordinate are kept fixed to 1.

Let y be a study variable on U . The unbiased estimator of population total
Y =

∑
yi is

Ŷπ =
∑
U

1
πi
yiIi. (4)

In this paper we consider fixed size n sampling designs. Then the variance of Ŷπ
is (Särndal, Swensson and Wretman 1992)

V arŶπ =
1
2

N∑
i=1

N∑
j=1

(
yi
πi
− yj
πj

)2 (
πiπj − πij

)
, (5)

and the unbiased estimator of the variance is

ˆV arŶπ =
1
2

N∑
i=1

N∑
j=1

(
yi
πi
− yj
πj

)2 (πiπj
πij
− 1

)
IiIj. (6)

2



3 Sampling with unequal inclusion probabilities

3.1 Inclusion probabilities proportional to size

It is useful to draw a sample from the population with probabilities proportional
to the variable y. In this case the π-estimator (4) would be precise for any sample
and the variance of the estimator would be zero.
The needed probabilities would be

πi =
nyi∑
U

yj
. (7)

In a real survey the values of y are unknown. If the values of another variable (size
variable) x are known for each element i and it is believed that xi is approximately
proportional to yi, one can compute the probabilities, using the values xi:

πi =
nxi∑
U

xj
. (8)

It may be true for some elements that πi > 1. Then let πi = 1 for all such
elements and the rest of the inclusion probabilities are

πi = (n− nA)
xi∑

U\A
xj
, (9)

where A is the set of nA elements such that nxi >
∑
U xj.

3.2 Mixed inclusion probabilities

Kröger, Särndal and Teikari (1999) have introduced a new method called Poisson
Mixture (Pomix) sampling. It is a Poisson sampling with mixed inclusion proba-
bilities, so that for the extremes of the mixing parameter it becomes Poisson πps
sampling or Bernoulli sampling.

Inclusion probabilities for Pomix sampling are calculated as follows:

λµi = µλ0 + (1− µ)λi, (10)

where λ0 = n
N

is the Bernoulli inclusion probability, λi is the πps inclusion prob-
ability calculated by (8)-(9), and µ ∈ [0, 1] is the mixing parameter.

As seen from (10) λµi = λ0 for all i if µ = 1, and λµi = λi if µ = 0.

As stated in Kröger, Särndal and Teikari (1999), Pomix sampling is easy to use
for regulating response burden with permanent random numbers. Monte Carlo
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study showed that the variance of Ŷ does not attain its minimum with µ = 0, but
with µ having value between 0.02 and 0.03. A shortcoming of Pomix-sampling is
the variable sample size.

We calculate the inclusion probabilities as described for Pomix sampling, but use
them in order sampling scheme. The result is a fixed size design which in one
end of the mixing parameter is a simple random sampling and in another end a
probability-proportional-to-size sampling.

3.3 Order sampling scheme

A convivient possibility to draw a sample with fixed size and unequal inclusion
probabilities is order sampling. In Rosén(1997a) the definitions are given as
follows:

Definition 1. To each unit i in U a probability function Fi is associated. Inde-
pendent random variables Qi with distributions Fi are realized. The units with
n smallest Q-values constitute the sample. This sampling scheme is called order
sampling and denoted by OS(n; F).

Definition 2. Let H(t) be a probability function and λ = (λ1, λ2, · · · , λN)
the target inclusion probabilities. Then the OS(n; F)-scheme with Fi(t) = H(t ·
H−1(λi)) is called order sampling with probability proportional to size and denoted
by OSπps(n,H, λ) .

The target inclusion probabilities λi are different from the exact inclusion prob-
abilities πi but converge asymptotically to πi (Roseń 1998). Depending on the
shape distribution three special order sampling schemes are considered in the
literature.

Uniform order sampling (earlier called sequential Poisson sampling by Ohlsson):

H(t) =
{
t, if 0 ≤ t ≤ 1,
1, if t ≥ 1; (11)

h(t) =
{

1, if 0 ≤ t ≤ 1,
0, if t ≥ 1; (12)

H−1(λi) = λi, i = 1, 2, ..., N. (13)

Exponential order sampling (earlier called successive sampling by Hájek):

H(t) = 1− e−t, h(t) = e−t, 0 ≤ t ≤ ∞, (14)
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H−1(λi) = ln(1− λi), i = 1, 2, ..., N. (15)

Pareto order sampling:

H(t) =
t

1 + t
, h(t) =

t

(1 + t)2 , 0 ≤ t ≤ ∞, (16)

H−1(λi) =
λi

1− λi
, i = 1, 2, ..., N. (17)

It is shown in Rosén (1997b) that the variance of the estimator of the population
total is minimized by Pareto shape distibution. Inclusion probabilities for Pareto
order sampling have been given by recursive formulae in Aires (1998).

We concentrate on the uniform case because generating random numbers from
the uniform distribution is most frequently used in practice for drawing a sample.
At the same time theoretical properties of uniform order sampling design have
not been studied much.

4 Order sampling design

4.1 General expression

Although easy to apply, the exact expression of the order sampling design was
until recently unknown. The general expression for the probability function of
the order sampling design was derived in Traat, Bondesson and Meister (2000).
Here we present an alternative derivation and two alternative forms of the final
result.

Consider population U = {1, 2, · · · , N} and order distributions F = (F1, F2, . . . , FN)
for the elements of U . We are looking for sampling design

p(k) = P (I = k). (18)

To draw a sample, ranking variablesQ1, Q2, . . . , QN from distributions F1, F2, . . . , FN
are realized. Population elements with n smallest Q-values constitute the sample.

Let us consider a realization k = (k1, k2, . . . , kN). By k the population is devided
into two subsets G1 ja G2:

G1 = {i : ki = 1},

G2 = {j : kj = 0}.
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Subset G1 consists of n sampled elements and G2 contains the rest N−n elements.
The biggest Q-value for the elements of subset G1 is bigger than the smallest Q-
value for the elements of subset G2.

Thus order sampling design is

p(k) = P (max
i∈G1

Qi < min
j∈G2

Qj) =
∫ ∞

0
Fmax(t)fmin(t)dt, (19)

where Fmax(t) is the distribution of max
i∈G1

Qi and fmin(t) is the density of min
j∈G2

Qj.

The distribution and density functions of max
i∈G1

Qi and min
j∈G2

Qj are:

Fmax(t) =
n∏
i=1

Fi(t), (20)

Fmin(t) = 1−
n∏
i=1
{1− Fi(t)}, (21)

fmax(t) =
n∑
i=1

fi(t)
n∏
j=1
j 6=i

Fj(t), (22)

fmin(t) =
n∑
i=1

fi(t)
∏
j=1
j 6=i

[1− Fj(t)]. (23)

Substituting these expressions into (19) we get:

p(k) =
∫ ∞

0

∏
i∈G1

Fi(t){
∑
j∈G2

fj(t)
∏
l∈G2
l6=j

[1− Fl(t)]}dt. (24)

Further, we may write

p(k) =
∑
j∈G2

∫ ∞
0

fj(t)
∏
l∈G2
l6=j

[1− Fl(t)]
∏
i∈G1

Fi(t)dt. (25)

Formula (25) gives us the probability of k = (k1, k2, . . . , kN). Noting that

∏
i∈G1

Fi(t) =
N∏
i=1

[Fi(t)]ki ,
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∏
l∈G2
l6=j

[1− Fl(t)] =
N∏
l=1
l6=j

[1− Fl(t)]1−kl

and

∑
j∈G2

(·) =
N∑
j=1

(1− kj)(·) (26)

we get

p(k) =
N∑
j=1

(1− kj)
∫ ∞

0

N∏
i=1

[Fi(t)]ki [1− Fi(t)]1−ki
fj(t)

1− Fj(t)
dt, (27)

Instead of (19) one may write:

p(k) = P (min
j∈G1

Qj > max
i∈G1

Qi) =
∫ ∞

0
[1− Fmin(t)]fmax(t)dt, (28)

where Fmin(t) is the distribution of min
j∈G2

Qj and fmax(t) is the density of max
i∈G1

Qi.

With (22) and (21) we get

p(k) =
∫ ∞

0

∏
j∈G2

[1− Fj(t)]{
∑
i∈G1

fi(t)
∏
l∈G1
l6=i

Fl(t)}dt (29)

and further

p(k) =
∑
i∈G1

∫ ∞
0

fi(t)
∏
l∈G1
l6=i

Fl(t)
∏
j∈G2

[1− Fj(t)]dt. (30)

Like in (27) we may write

p(k) =
N∑
j=1

kj

∫ ∞
0

N∏
i=1

[Fi(t)]ki [1− Fi(t)]1−ki
fj(t)
Fj(t)

dt. (31)

Depending on the order distribution, population and sample sizes it is more
comfortable to use one of the received alternative forms (27) or (31).
Formula (31) is the same as in Traat, Bondesson ja Meister (2000).

In the special case of all the distributions being equal, Fi(t) = F (t), i = 1, 2, . . . , N ,
the formula (27) reduces to

p(k) = (N − n)
∫ ∞

0
[F (t)]n[1− F (t)]N−n−1f(t)dt (32)
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and (31) to

p(k) = n
∫ ∞

0
[F (t)]n−1[1− F (t)]N−nf(t)dt. (33)

Since f(t) =
dF (t)
dt

, we may write

p(k) = (N − n)
∫ 1

0
[F (t)]n[1− F (t)]N−n−1dF (t) (34)

and

p(k) = n
∫ 1

0
[F (t)]n−1[1− F (t)]N−ndF (t). (35)

Using relationship (R̊ade and Westergren 1999, p. 174)

∫ 1

o
xm−1(1− x)n−1dx =

Γ(m)Γ(n)
Γ(m+ n)

, (36)

we get from (34)

p(k) = (N − n)
Γ(n+ 1)Γ(N − n)

Γ(N + 1)
(37)

and from (35)

p(k) = n
Γ(n)Γ(N − n+ 1)

Γ(N + 1)
.

Using aΓ(a) = Γ(a+ 1) = a!, if a ∈N , we get

p(k) =
Γ(n+ 1)Γ(N − n+ 1)

Γ(N + 1)
=
n!(N − n)!

N !
=
(
N

n

)−1

(38)

and

p(k) =
Γ(n+ 1)Γ(N − n+ 1)

Γ(N + 1)
=
(
N

n

)−1

. (39)

We see that the probability of getting a sample is exactly the same as for simple
random sampling, i.e. in case of equal order distributions we get simple random
sampling.

8



4.2 Uniform order sampling

Uniform order sampling was the first among order sampling scemes that was
studied and used in practical survey. It was called sequential Poisson sampling
and was not considered as a special case of the class of order sampling scemes
(Ohlsson 1998).

With given λ, and H(t) being uniform distribution, the terms in (31) are

Fj(t) = min(1, λjt),

1− Fj(t) = max(0, 1− λjt),

fi(t)
Fi(t)

=


1
t
, if t ∈ [0,

1
λi

],

0, otherwise.

Consequently, the probability function of the uniform order sampling design is

p(k) =
N∑
i=1

ki

∫ 1
λ∗
i

0

1
t

N∏
j=1

min(1, λjt)kj max(0, 1− λjt)1−kjdt, (40)

where 1
λ∗i

= min( 1
λi
, 1
λj

: kj = 0).

As soon as we know the sampling design it is possible to calculate the first and
second order inclusion probabilities for population elements using (2)-(3).

4.3 The λ-estimator

Due to the absence of the analytical form of the probability function of order
sampling design it was difficult to calculate the exact inclusion probabilities. Aires
(1998) has given recursive algorithms only for Pareto order sampling. Therefore,
it was generally not possible to use classical π-estimator under order sampling
design.

Let λ1, λ2, . . . , λN be the target inclusion probabilities. Since πi ≈ λi and πi → λi
if the population size and sample size grow (Rosén 1998), it is reasonable to use
λ-estimator for the population total Y :

Ŷλ =
∑
U

1
λi
yiIi. (41)

The λ-estimator is used for the Consumer Price Index in Statistics Sweden to-
gether with uniform order sampling design (Ohlsson 1998).
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As EIi = πi, V arIi = πi(1 − πi) and Cov(Ii, Ij) = πij − πiπj, the design-based
expectation and variance of Ŷλ are

EŶλ =
∑
U

πi
λi
yi, (42)

V arŶλ =
∑
U

yiyj
λiλj

(πij − πiπj). (43)

The bias of λ-estimator is

EŶ − Y =
N∑
i=1

(
πi
λi
− 1)yi. (44)

Ohlsson(1998) suggests the following formulae to compute the variance of λ-
estimator:

V arŶλ =
1
n2

N∑
i=1

(
nyi
λi
− Y )2λi(1− λi), (45)

ˆV arŶλ =
1

n(n− 1)

N∑
i=1

(
nyi
λi
− Ŷ )2(1− λi)Ii. (46)

In the following examples we study the behaviour of λ-estimator under uniform
order sampling design, and compare it with the behaviour of π-estimator. The
necessary first and second order inclusion probabilities are calculated by (40) and
(2)-(3).

5 Examples

In the following examples we study OSπps(n;H;λ) with H(t) being uniform
distribution. The corresponding sampling design is given by formula (40). In
addition to the common πps target inclusion probabilities we consider mixed
inclusion probabilities (10).

All the calculations were made in Mathcad (see Appendices).

5.1 Example 1

We consider population U = {1, 2, · · · , 8} and all possible samples with size n = 3,

i.e.
(

8
3

)
= 56 samples all together.
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Let y be the study variable related to the size variable x through the relationship

yi = 2xi + εi, (47)

where xi ∼ Exp(1
5) and εi ∼ N(0, 3).

In Table 1 one can see the finite population values x and y generated by (47) and
target inclusion probabilities λ calculated by (8)-(9). The finite population total
is 139.22 in our example.

Table 1. The values of x, y, λ and π

i xi yi λi πi
|λi−πi|
λi

1 33.35 63.85 1.0000 0.9070 0.093
2 8.22 11.38 0.4903 0.5410 0.103
3 2.68 5.49 0.1600 0.1501 0.062
4 5.24 10.13 0.3129 0.3119 0.003
5 0.97 3.62 0.0582 0.0528 0.093
6 8.74 24.05 0.5215 0.5823 0.117
7 1.71 5.84 0.1020 0.0938 0.080
8 5.95 14.86 0.3552 0.3611 0.016∑

66.87 139.22 3.0000 3.0000

Using (40)and (2)-(3) the probabilities of all possible samples and the exact in-
clusion probabilities for population elements were found. Table 2 presents the
symmetric matrix of second order inclusion probabilities; the main diagonal con-
sists of the first order inclusion probabilities. One can compare given λ and
realized π in Table 1 (see also Appendix 1).

Table2. Second order inclusion probabilities

1 2 3 4 5 6 7 8
1 0.9070 0.4786 0.1236 0.2652 0.0426 0.5179 0.0763 0.3099
2 · · · 0.5410 0.0501 0.1111 0.0170 0.2627 0.0307 0.1318
3 · · · · · · 0.1501 0.0270 0.0043 0.0560 0.0077 0.0316
4 · · · · · · · · · 0.3119 0.0092 0.1255 0.0166 0.0691
5 · · · · · · · · · · · · 0.0528 0.0190 0.0027 0.0108
6 · · · · · · · · · · · · · · · 0.5823 0.0342 0.1494
7 · · · · · · · · · · · · · · · · · · 0.0938 0.0195
8 · · · · · · · · · · · · · · · · · · · · · 0.3611

Every sample was used to compute estimates of population total and of the vari-
ances. Since in our case we know the exact inclusion probabilities then in addition
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to the λ-estimator we also consider the π-estimator. The design probabilities, the
λ- and π-estimators (4) and (41) of population total and variance estimators (6)
and (46) for some samples are printed in Table 3.

Table 3. Sampling design. The estimators
i k p(k) Ŷπ Ŷλ ˆV arŶπ ˆV arŶλ
1 (1,1,1,0,0,0,0,0) 0.036 128.01 121.39 320.54 510.25
2 (1,1,0,1,0,0,0,0) 0.084 123.89 119.41 225.21 359.82
3 (1,1,0,0,1,0,0,0) 0.012 160.01 149.27 1594.68 491.28
4 (1,1,0,0,0,1,0,0) 0.223 132.73 133.18 160.33 217.87
5 (1,1,0,0,0,0,1,0) 0.022 153.72 144.37 1183.83 467.17
· · · · · · · · · · · · · · · · · · · · ·
52 (0,0,0,1,0,0,1,1) 0.001 135.93 131.52 1056.79 536.36
53 (0,0,0,0,1,1,1,0) 0.000 172.19 165.66 758.28 544.29
54 (0,0,0,0,1,1,0,1) 0.001 151.06 150.18 1033.04 418.53
55 (0,0,0,0,1,0,1,1) 0.000 172.05 161.37 936.68 667.82
56 (0,0,0,0,0,1,1,1) 0.002 144.77 145.28 593.07 394.41

The main characteristics of the design-based distributions of the estimators are
given in Table 4.

Table 4. The characteristics of the design-based distributions of the estimators

Ŷπ Ŷλ ˆV arŶπ ˆV arŶλ
Minimum 90.09 89.91 27.43 137.92

Expectation 139.22 136.24 284.51 295.72
Maximum 201.28 183.37 2681.86 836.66

Exact value 139.22 139.22 284.56 214.20

The exact values in Table 4 are the finite population total and the actual design
based variances (5) and (43). The theoretical variance formula (45) gave the
value V arŶ = 225.91.

Some notes about the example:

1. The exact inclusion probabilities differ from the target ones. The absolute
relative differences between target and actual inclusion probabilities are less than
0.117 (see Table 1).

2. The λ-estimator of the population total has a bias, B = −2.98.

3. The λ-estimator of the population total has considerably smaller variance than
the π-estimator (214.20 compared to 284.56).
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4. ˆV arŶλ (46) is seriously biased for actual design based variance (43), B =
295.72− 214.20 = 82.52.

5. ˆV arŶλ (46) estimates rather the design based variance (5) of the π-estimator
than the variance (43) of λ-estimator.

6. ˆV arŶλ is much more stable variance estimator than ˆV arŶπ (compare the
minimums and maximums).

5.2 Example 2

In the second example the same population with variables x and y was consid-
ered. Mixed inclusion probabilities were used instead of the common πps inclusion
probabilities.
Mixed inclusion probabilities were calculated by (10) where λ0 = 3

8 , and λi were
taken from Table 1. Mixing parameter µ was varied.
The λ-estimator, design-based variance (43), and variances (45)-(46) were stud-
ied. The results for different values of µ are given in Table 5.

Table 5. λ-estimator and its variance
µ = 0 µ = 0.01 µ = 0.02 µ = 0.04 µ = 0.06 µ = 0.1

EŶλ (42) 136.34 136.45 136.56 136.79 137.02 137.44
V arŶλ (43) 214.49 208.90 204.49 201.14 202.58 224.27
V arŶλ (45) 225.91 222.30 220.91 221.05 226.68 249.81

E( ˆV arŶλ) (46) 295.72 283.52 275.53 269.80 274.90 309.09

The same interesting phenomena that the variance is not minimized with strictly
πps probabilities, was also pointed out in Kröger, Särndal and Teikari (1999) for
Pomix-sampling. In our case the design based variance (43) was minimized with
µ ≈ 0.04.
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